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A B S T R A C T

Stressor exposure is a predisposing risk factor for many psychiatric conditions such as PTSD and depression.
However, stressors do not influence all individuals equally and in response to an identical stressor some
individuals may be vulnerable while others are resilient. While various biological and behavioral factors
contribute to vulnerability versus resilience, an individual's degree of control over the stressor is among the most
potent. Even with only one experience with control over stress, behavioral control has been shown to have acute
and long-lasting stress-mitigating effects. This suggests that control both blunts the response to acute stress and
prepares the subject to be resilient to future stressors. In this review, we first summarize the evidence which
suggests the ventromedial prefrontal cortex (vmPFC) is a critical component of stressor controllability circuits
and a locus of neuroplasticity supporting the acute and long-lasting consequences of control. We next review the
central endocannabinoid (eCB) system as a possible mediator of short and long-term synaptic transmission in the
vmPFC, and offer a hypothesis whereby eCBs regulate vmPFC circuits engaged when a subject has control over
stress and may contribute to the encoding of acute stress coping into long lasting stressor resilience.

1. Introduction

Stressor exposure is a risk factor for PTSD and depression (Gillikin
et al., 2016). However, stressors do not influence all individuals
equally. In response to an identical stressor, some individuals may
develop chronic PTSD (i.e. vulnerable population), while others may
experience transient symptoms of trauma but recover quickly (i.e.
resilient population). Genetic and behavioral factors contribute to
vulnerability versus resilience within an individual (Southwick and
Charney, 2012) and these have been the focus of considerable clinical
and preclinical research (Russo et al., 2012). Identifying the biological
basis to account for individual responses to stressors could lead to
significant advances in the treatment and diagnosis of psychiatric
disease (Ménard et al., 2016). In terms of behavioral factors that can
dramatically alter the consequences of a stressor, an individual's degree
of control over the stressor is among the most significant (Maier and
Watkins, 2005; Maier et al., 2006). The stress-protective effects of
control over stressors have been investigated in a stressor controll-
ability paradigm for several decades (Maier and Seligman, 2016).
Accordingly, much is known regarding the neuroanatomical circuits
engaged when a stressor is controllable, and it is well understood that
control over stress can mitigate the development of stressor induced

anxiety and depressive-like behaviors (Christianson and Greenwood,
2014). In this review, we first summarize the evidence which suggests
the ventromedial prefrontal cortex (vmPFC), composed of the prelimbic
(PL) and infralibic regions (Uylings and van Eden, 1990), is a critical
component of stressor controllability circuits and a locus of neuroplas-
ticity. We next review the central endocannabinoid system which we
hypothesize maintains activity of critical vmPFC circuits when control
over stress occurs and may contribute to the encoding of acute stress
coping into long lasting stressor resilience.

Stressor controllability research has roots in the early investigations
of “learned helplessness”. Learned helplessness is a term that intended
to capture the psychological process that mediated the phenomenon
that dogs exposed to inescapable shocks failed to learn instrumental
escape-avoidance responses at a later time in a new situation (Overmier
and Seligman, 1967; Seligman and Maier, 1967). Indeed, the phenom-
enon of uncontrollable stressors negatively influencing later behaviors
is a widely replicated and useful experimental tool; accordingly, the
mechanisms underlying the various effects of stress on behavior are
quite well known (See reviews by Maier and Watkins (2005) and
Hammack et al. (2012)). Shortly after the initial report of learned
helplessness, a number of studies began to experimentally determine
whether the consequences of inescapable stress exposure were, in fact,
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due to their inescapable, uncontrollable nature (Maier and Seligman,
1976). In these experiments, a pair of subjects, typically rats, received a
series of shocks which were unpredictable. One of the subjects could
terminate the shock for itself (escapable shock condition; ES) and the
yoked partner (inescapable shock condition: IS) by performing a
behavioral response, typically turning a wheel. This preparation allows
the investigator to isolate the contribution of stressor controllability
from the contribution of stress itself in causing stress-related behaviors.
For example, rats exposed to IS exhibited reduced social interaction
behavior, an indication of stressor-induced anxiety, but rats given
control over stress had normal social behavior even after identical
shock exposure (Short and Maier, 1993; Christianson et al., 2008). As
we will summarize below, many of the effects of IS do not occur when
the subject is able to perform a behavioral response to terminate the
stressor which makes the stressor controllability paradigm a powerful
tool for investigating the biological basis of resilience to trauma.

Perhaps the first step in understanding the mechanisms of resilience
is to understand how trauma affects behavior and brain systems. This
informs the next step which is to examine how control over trauma
alters these consequences and to identify behavioral or neural corre-
lates that are unique to subjects with control. Many studies have
investigated the various behavioral sequelae that result from exposure
to IS, of which many endure for up to a week. For example, IS exposure
leads to failure to learn to escape in a shuttlebox (Maier et al., 1973),
reduced activity in the forced swim test (Weiss et al., 1981), reduced
activity in the presence of an aversive stimuli (Jackson et al., 1980),
exaggerated fear conditioning (Maier, 1990; Baratta et al., 2007; Rau
and Fanselow, 2009), reduced social interaction (Short and Maier,
1993; Haller and Bakos, 2002; Christianson et al., 2008), opioid
analgesia (Grau et al., 1981), potentiation of morphine conditioned
place preference (Will et al., 1998), decreased aggression and dom-
inance (Maier et al., 1972), reduced eating and drinking, and neopho-
bia (Maier and Watkins, 2005). In each of these cases, rats given control
over the stressor did not display the stressor induced behaviors.

Control over the stressor not only mitigates the effects of the stressor
observed during initial stress exposure, but also has an “immunizing”
effect against future uncontrollable stressors. This effect was discovered
when rats were first given either controllable or uncontrollable stress
and at a later time given a second uncontrollable stressor. Rats that first
had control did not develop learned helplessness to the second,
uncontrollable stressor (Williams and Maier, 1977). These effects have
been repeated recently (Amat et al., 2006; Christianson et al., 2008)
and have been shown to transfer to protection against stressors that are
quite different than shock including social defeat (Amat et al., 2010)
and forced swim (Christianson et al., 2013). Furthermore, the immu-
nizing effects of stressor controllability are long-lasting, in that
exposure to ES during adolescents can block the sequelae of later IS
exposure in adulthood (Kubala et al., 2012). The combination of acute
and long-lasting consequences of one experience with control over
stress suggests that control both blunts the response to acute stress but
also prepares the subject to be resilient to future stressors.

2. Brain mechanisms of stressor controllability

2.1. The neural circuitry of inescapable stress

Investigations into the neural mechanisms of IS date back to the
1970s when the laboratories of Weiss and Anisman sought to under-
stand the role of catecholamines in the generation of stressor induced
depression e.g. (Anisman et al., 1981; Weiss et al., 1981). These and
later investigations of the hypothalamic-pituitary-adrenal axis (Maier
et al., 1986) did not account for the broad array of behavioral changes
produced by uncontrollable stress. In the 1990s, Maier and colleagues
began to explore the role of the serotonin (5-HT) system and the dorsal
raphe nucleus (DRN). DRN 5-HT neurons are the primary source of
central 5-HT and innervate a wide range of forebrain structures such as

the vmPFC, basal ganglia, and amygdala, (Jacobs and Azmitia, 1992;
Hale et al., 2012) which were thought to be important to the expression
of learned helplessness. It was hypothesized that as a consequence of its
forebrain projections sensitivity to stressors, activation of 5-HT in the
DRN could mediate the broad effects of IS (Maier and Watkins, 2005;
Christianson and Greenwood, 2014).

The DRN was first shown to be necessary to produce the behavioral
effects of IS by Maier et al. (1993). They demonstrated that electrolytic
lesions in the DRN prior to exposure to IS prevented the enhanced fear
conditioning and shuttle box escape deficit that was observed after IS in
sham lesion controls. Importantly, the DRN lesions had no effect on
these measures in non-stressed rats. Furthermore, through reversible
pharmacological inhibition either before IS or before shuttlebox escape
and fear conditioning it was shown that the DRN is critical to both the
acquisition and later expression of learned helplessness (Maier et al.,
1995b). Next, activation of the DRN with the benzodiazepine receptor
inverse agonist, Methyl 6,7-Dimethoxy-4-ethyl-β3-carboline-3-carbox-
ylate (DMCM) without exposure to stress enhanced fear conditioning
and interfered with shuttle box escape 24 h later (Maier et al., 1995a).
Thus pharmacological stimulation of the DRN in the absence of IS was
sufficient to produce the behavioral effects of IS. Taken together, these
results demonstrate that activation of the DRN itself was shown to be
necessary and sufficient to produce the behavioral effects of IS.

It was also suggested that 5-HT neurons, which are regulated by the
inhibitory 5-HT1A autoreceptor, are the critical population of DRN cells
because administration of a 5-HT1A agonist, which inhibits 5-HT firing
(Kirby et al., 2003), prevented both the acquisition and later expression
of learned helplessness (Maier et al., 1995b). Importantly, in order to
appreciate the effects of IS on DRN 5-HT activity and distinguish these
from the effects of stress per se, it is necessary to make comparisons
between IS and ES. Thus, in subsequent descriptive studies, Maier and
colleagues quantified the activity of 5-HT neurons during and after
either ES or IS, to determine if these cells are sensitive to the dimension
of behavioral control; differences between ES and IS emerged on several
levels of analysis which have been reviewed (Maier and Watkins, 2005;
Maier and Seligman, 2016). The key differences between ES and IS
include: greater Fos expression in DRN 5-HT neurons after IS compared
to ES (Grahn et al., 1999), greater extracellular 5-HT, indicative of 5-HT
release, during IS compared to ES in the DRN (Maswood et al., 1998)
basolateral amygdala (Amat et al., 1998b), ventral hippocampus (Amat
et al., 1998a), vmPFC (Bland et al., 2003a), and nucleus accumbens
shell (Bland et al., 2003b).

Intense activation of DRN 5-HT neurons and increased extracellular
5-HT are only transient effects of IS, but the behavioral changes that
result can be observed up to a week later. It was discovered that not
only does IS result in increased activation of the DRN at the time of IS
exposure, but also alters DRN activity to subsequent stressors including
footshock (Amat et al., 1998b), drugs of abuse (Bland et al., 2003a) and
social defeat (Amat et al., 2010). Using our recent study as an example,
we conducted in vivo microdialysis to quantify extracellular 5-HT in the
basolateral amygdala during an innocuous social interaction test given
24 h after exposure to ES, IS or no stress. Only in rats that were exposed
to IS did the social interaction evoke a significant increase in amygdala
5-HT (Christianson et al., 2010). We hypothesized that exaggerated
release of 5-HT in the basolateral amygdala was the proximal cause of
social anxiety in rats exposed to IS, and indeed the IS effect was
prevented if a 5-HT2C receptor antagonist was infused to the basolat-
eral amygdala prior to social interaction tests, but not when given
before IS. In sum, control over stress is a powerful determinant of DRN
5-HT activity during shock and prevents long-lasting changes in the
stress sensitivity of the DRN system.

The foregoing was consistent with a hypothesis set forward by
Greenwood et al. (2003) who suggested that inescapable stress caused
sensitization of the raphe, in part, via downregulation of 5-HT1A
autoreceptors. 5HT1A are somatodendritically expressed GPCRs which
activate inward rectifying K channels and when activated by 5-HT from
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recurrent collaterals they inhibit 5-HT cell firing and release of 5-HT.
Recently, Rozeske et al. (2011) directly tested the 5-HT1A down-
regulation hypothesis by quantifying 5-HT1A receptor tone in the
DRN with in vitro electrophysiology. They found that putative 5-HT
neurons required significantly larger concentrations of 5-HT or 5-HT1A
agonists to produce inhibition of spontaneous firing after IS directly
pointing to downregulation of 5-HT1A receptors (Rozeske et al., 2011).
To summarize, exposure to uncontrollable stress provides sustained
excitatory drive to the DRN which in turn leads to downregulation of
DRN somatodendritic 5-HT1A autoreceptors. This downregulation
sensitizes the DRN for a period of time (1–7 days) in which subsequent
milder stressors will evoke greater 5-HT activation and release in
projection regions, such as the amygdala, where high levels of 5-HT
modulate neural circuits which are the proximate mediators of stressor
induced behaviors; and this is the mechanism by which inescapable
stress alters many behaviors from shuttle learning, to social interaction,
to drug seeking (Christianson and Greenwood, 2014).

2.2. The neural circuits and neurochemistry of escapable stress

What are the neuroanatomical loci that detect control over stress
and so prevent the sequelae of stress? It is unlikely to be the DRN, and it
has been suggested that this is because the DRN does not receive the
necessary inputs to detect whether the onset or offset of a stressor is
temporally related to a behavior (Maier, 2015). Interestingly, both IS
and ES activate brain regions that send excitatory input to the DRN
(Amat et al., 2001; Takase et al., 2005; McDevitt et al., 2009), but only
IS results in the sustained activation of 5-HT neurons. Thus, the
differential net impact of IS and ES would seem to require ES-induced
inhibitory inputs to the DRN. The DRN primarily receives its cortical
input from vmPFC, a region proposed as critical to stress resilience
(Jordan et al., 1994; Maier and Watkins, 2010; McEwen and Morrison,
2013; Sinha et al., 2016). Furthermore, unlike the DRN, the vmPFC has
been shown to be involved in action-outcome learning (Ostlund and
Balleine, 2005; Alexander and Brown, 2011) and receives inputs that
would allow for the detection of control. Consistent with this, it has
been shown that the PL receives thalamocortical inputs relating to
actions and projects to the dorsomedial striatum which is critical for
associating actions with their outcomes (Balleine and O'Doherty, 2010).
In the case of stressor controllability, the behavior is performing a
wheel-turn which has the desirable outcome of shock termination. The
vmPFC projection to the DRN provides monosynaptic glutamatergic
input to both the local inhibitory GABAergic neurons and to 5-HT
principle neurons (Jankowski and Sesack, 2004; Geddes et al., 2016).
Thus, activation of descending vmPFC pyramidal neurons can both
inhibit or excite the DRN 5-HT neurons by driving inhibitory inter-
neurons which synapse onto 5-HT neurons (Hajós et al., 1998; Celada
et al., 2001) or by directly exciting 5-HT cells (Warden et al., 2012;
Geddes et al., 2016).

Given the vmPFC's anatomical position to integrate information
about control over stress (i.e. the action/outcome contingency between
the turning a wheel and shock termination) with regulation of the DRN
stress response, Amat and colleagues proposed that inhibition of the
vmPFC during controllable stress would cause these rats to later behave
as if their stressor exposure had been uncontrollable. Indeed, in rats
with pharmacological inactivation of the vmPFC during an exposure to
controllable stress displayed sustained DRN activation, exaggerated
fear expression, shuttle box learning deficits (Amat et al., 2005), social
anxiety (Christianson et al., 2008), increased drug seeking (Rozeske
et al., 2012), and downregulated DRN 5-HT1A receptors (Rozeske et al.,
2011) all of which typically only occur when the stressor is uncontrol-
lable. Going further, vmPFC inactivation also prevented the long-lasting
immunizing effects of controllable stress (Amat et al., 2006) which
suggests that the vmPFC is involved in both the acute regulation of the
stress response and also to the long-term processes that afford
resilience.

In a corresponding set of descriptive experiments, a number of
findings suggest that it is the PL that is selectively engaged during
controllable stress to regulate the DRN. First, ES led to greater Fos
immunoreactivity in the PL neurons that project from the vmPFC to the
DRN; and this pathway was also activated upon subsequent exposure to
IS in the immunization paradigm (Baratta et al., 2009). Next, con-
trollable stress exposure increased the intrinsic excitability of deep
layer pyramidal neurons in the PL, but uncontrollable stress exposure
did not (Varela et al., 2012). Third, controllable stress selectively
upregulated levels of phosphorylated extracellular signal-regulated
kinase (ERK), a marker of synaptic plasticity (Thomas and Huganir,
2004), within the PL (Christianson et al., 2014). Together these findings
suggest that during controllable stress there is a high level of neuronal
activity and plasticity in the PL that mediate the acute and long-lasting
resilience conferred by stressor controllability. Accordingly, pharmaco-
logical blockade of either PL protein synthesis (Amat et al., 2006),
NMDA receptors or ERK signaling (Christianson et al., 2014) all
prevented the acute and immunizing effects of ES.

The foregoing reviewed the compelling evidence that the PL is a
locus of neuroplasticity critical to stress resilience. However, we must
reconcile these studies with a seemingly contradictory finding about
learned helplessness and the vmPFC. In the studies of Li and colleagues
in which mice were exposed to uncontrollable stress, they report that
synaptic potentiation within the PL is critical to the development of
learned helplessness-like behaviors—the exact opposite of what occurs
in stressor controllability (Perova et al., 2015). One way of resolving
this discrepancy would be considering the underlying circuitry that may
be potentiated during exposure to IS versus exposure to ES. Stress per se
in the form of IS and ES both lead to robust activation within the PL, but
only ES leads to selective activation of DRN projecting output neurons
(Baratta et al., 2009). It is not yet known whether activation of the PL
during IS serves a necessary function in the development of the
behaviors in the stressor controllability paradigm. Presumably, the
Fos observed in the PL during IS reflects activity of PL neurons that
project to regions that drive the stress response such as the lateral
habenula (Li et al., 2011), among others. How can controllable stressors
drive one PFC circuit, the one projecting to the DRN, while uncontrol-
lable stressors drive another to maintain the stress the response? One
possibility is a synaptic mechanism engaged during stress that could
alter the balance of excitation and inhibition within select vmPFC
circuits depending on the presence of behavioral control.

3. The endocannabinoid system

3.1. Endocannabinoids regulate excitatory/inhibitory balance

Excitatory/inhibitory balance is driven by myriad mechanisms
within the cortex; however, one interesting regulatory mechanism
within the vmPFC is through retrograde endocannabinoid (eCB)
signaling (Yoshino et al., 2011). There are two known cannabinoid
receptors, CB1 receptor (CB1R) and CB2 receptor, with CB1R being the
primary cannabinoid receptor within the brain. CB1R is an inhibitory,
G-protein coupled receptor (GPCR) coupled to intracellular Gi/o
proteins. Activation of CB1Rs inhibits adenylyl cyclase activity leading
to a subsequent reduction in the cyclic adenosine monophosphate
(cAMP) cascade, augmentation of inward rectifying potassium chan-
nels, and inhibition of subsequent calcium influx via voltage-gated
calcium channels (Howlett, 2002). Neuroanatomical studies have
confirmed prominent widespread expression of the CB1R throughout
the forebrain, basal ganglia, and limbic system (Glass, 1997; Mato et al.,
2004) with greatest expression in the neocortex, hippocampus, stria-
tum, substantia nigra, and cerebellum, while moderate CB1R immunor-
eactivity has been detected in the cingulate, entorhinal and piriform
cortical areas, olfactory bulbs, amygdala, and nucleus accumbens
(Herkenham et al., 1990). Important to this review, CB1Rs are
abundantly expressed in the vmPFC (Marsicano and Lutz, 1999;
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Moldrich and Wenger, 2000). At the cellular level, CB1Rs are located on
presynaptic axon terminals of glutamatergic principal neurons as well
as on a subpopulation of cholecystokinin-positive GABAergic basket
cells (Katona and Freund, 2012). Thus, eCBs are positioned to modulate
the balance of excitation and inhibition within a given neural circuit by
action at the CB1R.

There are two well characterized naturally occurring endogenous
ligands with potent agonist activity at the CB1R. These are the
arachidonate-derived lipophilic molecules N-arachidonylethanolamide
(anandamide; AEA) and 2-arachidonylglycerol (2-AG; (Devane et al.,
1992; Sugiura et al., 1995). Both AEA and 2-AG are synthesized in
postsynaptic neurons by activity-dependent cleavage of phospholipid
head groups via activation of specific enzymes. As such, eCBs are
synthesized on demand in postsynaptic cells following postsynaptic
membrane depolarization. While 2-AG is synthesized primarily though
diacylglycerol lipase (DGL), several synthesis pathways have been
proposed for the production of AEA; however, it remains unclear which
AEA synthesis pathway is primarily employed in the brain (Bisogno,
2008). Once synthesized, they then travel in a retrograde manner to
bind CB1Rs located on the presynaptic membrane of either the original
afferent (homosynaptic) or nearby afferents (heterosynaptic) where
cellular effects include suppression of axonal calcium influx, and
activation of GIRKs to hyperpolarize the presynaptic terminal and
inhibit neurotransmitter release (Di Marzo, 1999; Katona and Freund,
2012). Termination of AEA and 2-AG signaling begins with transport
across the plasma membrane followed by enzymatic hydrolysis (Ahn
et al., 2008). This is accomplished via their respective hydrolytic
enzymes; fatty acid amide hydrolase (FAAH) – the primary catabolic
enzyme for AEA – and monoacylglycerol lipase (MGL) – the primary
catabolic enzyme of 2-AG (Bisogno, 2008).

Although 2-AG and AEA bind to the same receptor, the evidence
suggests they play dissociable roles in synaptic transmission. For
instance, AEA exhibits a high affinity for CB1Rs, but its efficacy at
inducing intracellular signal transduction is somewhat poor, with only
partial agonist properties. AEA appears to contribute to the tonic level
of circuit output by reducing presynaptic GABAergic release probability
(Kim and Alger, 2010; Xia et al., 2016). In contrast, 2-AG has a lower
affinity for CB1R but induces a robust intracellular response (Hillard,
2000). The short-term plasticity phenomena depolarization induced
suppression of inhibition (DSI) and depolarization induced suppression
of excitation (DSE) as well as in long term plasticity such as eCB
mediated long-term depression (eCB-LTD) are mediated by 2-AG
(Heifets and Castillo, 2009; Katona and Freund, 2012; Shonesy et al.,
2014; Guggenhuber et al., 2015). DSI occurs after a postsynaptic
neuron is depolarized for a protracted period and is evinced by fewer
somatic inhibitory post synaptic currents. This phenomenon would
permit the postsynaptic cell to remain in a relatively more excitable
state (due to reduced presynaptic inhibition) after firing a train of
action potentials. DSE, on the other hand, occurs at dendritic excitatory
synapses; after a brief train of high frequency synaptic stimulation
fewer excitatory post synaptic potentials are evident. Both DSI and DSE
are relatively brief phenomena, recovering on the order of 10s of
seconds, but can shape the flow of information through a circuit and
shape the development of longer lasting synaptic plasticity at specific
synapses. Prolonged exposure to eCBs can result in a form of chemical
LTD and has been observed at both excitatory and inhibitory synapses
(Heifets and Castillo, 2009). Importantly, this eCB mediated LTD is
dependent on both NMDA receptors (Sjöström et al., 2003) and protein
synthesis (Yin et al., 2006). In the vmPFC, DSI appears to be mediated
by 2-AG. Yoshino et al. demonstrated that DSI within the vmPFC
neurons can be abolished by either application of a DGL inhibitor or
knockout of the DGLα gene. Furthermore, they demonstrated that DSI
in the vmPFC neurons was enhanced after raising 2-AG levels, but not
affected by changes in AEA (Yoshino et al., 2011). Similarly, MGL, but
not FAAH, administration has been shown to block DSE, thus demon-
strating that 2AG rather than AEA is necessary to induce DSE (Su et al.,

2013). AEA, on the other hand, regulates tonic circuit inhibition by
regulation of presynaptic GABAergic neurons and so may play a
significant role in tuning excitatory/inhibitory balance in the vmPFC
(Ahn et al., 2011; Katona and Freund, 2012; Morena et al., 2016). Thus,
2-AG is thought to induce a rapid and robust CB1R response that is
required for modulation of activity-induced synaptic plasticity, while
AEA operates in parallel to regulate overall circuit excitability.

Spatial segregation within distinct microcircuits and within sub-
cellular compartments may also allow for AEA and 2-AG to act as
independent regulators of neuronal excitability (Katona and Freund,
2012) and it is likely that the release of eCBs are determined by very
specific synaptic antecedents (Kim and Alger, 2010). To summarize,
dissociable roles for 2-AG and AEA acting on the same receptor may be
achieved by action on separate timescales, phasic versus tonic respec-
tively, or by spatial segregation at the level of the subcellular or
microcircuit level. Although more research is needed to clarify the exact
roles of 2-AG and AEA in the vmPFC, the extant data indicate that 2-AG
is critical for modulating both excitatory and inhibitory presynaptic
inputs in response to various physiological stimuli or patterns of neural
activity, while AEA plays a homeostatic role gating overall circuit
excitatory tone. Going further, it is conceivable that 2-AG can both
boost circuit excitability via modulation of presynaptic interneurons
(that is, by DSI or LTD of inhibitory synapses) and constrain certain
presynaptic glutamatergic inputs (that is, by DSE or LTD of excitatory
inputs) within the same microcircuit.

3.2. Endocannabinoids and stress

Recently there has been a significant investment in research into the
eCB system in the context of stress (Lutz et al., 2015; Morena et al.,
2016). Disruption of eCB synthesis or blockade of the CB1R promotes
activation of the HPA axis suggesting a role for the cannabinoid system
in regulating the stress response (Patel et al., 2004; Hill and McEwen,
2010). Regarding eCBs in the vmPFC there are several studies involving
uncontrollable stressors. In response to acute, uncontrollable stressors,
AEA levels have been found to decrease within the mPFC in a relatively
rapid manner being seen as early as 5 min following swim stress
(McLaughlin et al., 2012), but by 1 h post onset of restraint stress,
these changes have returned to baseline levels (Hill et al., 2011). 2-AG,
on the other hand, has a delayed response to stress with no changes
found immediately after a 5 or 15 min swim stress exposure
(McLaughlin et al., 2012) but a delayed increase at 1 h post-stress
onset that is mediated by glucocorticoids (Hill et al., 2011). This
divergent regulation of AEA and 2-AG within the vmPFC following
exposure to acute stress becomes amplified and prolonged following
exposure to repeated stress or sustained glucocorticoid exposure (Hill
et al., 2008; Rademacher et al., 2008; Hill et al., 2010; Dubreucq et al.,
2012; Gray et al., 2016).

Second, eCB signaling in the vmPFC can also modulate neurobeha-
vioral and endocrine responses to stress. For example, antagonism of
CB1R locally within the vmPFC prolonged corticosterone secretion
following cessation of stress in rats (Hill et al., 2011) and facilitated
passive coping responses to a behavioral challenge in animals who had
a history of stress exposure (McLaughlin et al., 2013). Additionally,
lentivirus-mediated local over expression of FAAH in the vmPFC, which
elicits a marked decrease in AEA signaling in this region similar to what
is seen following exposure to stress, has been shown to be sufficient to
elicit an anxiogenic response (Rubino et al., 2008a). Consistent with
these data suggesting that interfering with eCB signaling in the vmPFC
can worsen or mimick the effects of stress, augmenting eCB signaling has
been found to reduce stress. Local elevation of AEA by inhibition of
FAAH within the vmPFC can dampen stress-induced activation of the
HPA axis (McLaughlin et al., 2014), temper behavioral responses to
shifts in environmental threat (Aliczki et al., 2016), reduce anxiety
(Rubino et al., 2008b; Lisboa et al., 2015), attenuate fear expression
(Lisboa et al., 2010) and promote active coping responses to stress

N.B. Worley et al. Progress in Neuropsychopharmacology & Biological Psychiatry xxx (xxxx) xxx–xxx

4



(McLaughlin et al., 2012; Sartim et al., 2016). Comparable effects are
seen following direct activation of CB1Rs exclusively in the vmPFC
whereby CB1R agonists reduce anxiety (Rubino et al., 2008a,b;
McLaughlin et al., 2014; Fogaça et al., 2016), fear expression (Lin
et al., 2009) and increase active coping responses to stress (Bambico
et al., 2007; Sartim et al., 2016).

Together, these data indicate that eCB signaling within the vmPFC
gates emotional behavior, stress coping strategies and neuroendocrine
function. As such, disruptions in eCB signaling result in prolonged and
exaggerated responses to stress, while elevations in prefrontal eCB
signaling may confer a state of stress resilience by tempering neurobe-
havioral responses to stress. Given that eCB signaling in the vmPFC can
particularly regulate GABAergic transmission (Chiu et al., 2010; Hill
et al., 2011), it's possible that deficits in eCB signaling here could result
in feedforward inhibition of pyramidal neurons in the vmPFC, while
elevated eCB signaling may increase the excitability of prefrontal
projection neurons and enhance their top down control of subcortical
circuits. This model is consistent with electrophysiological work
demonstrating that elevating eCB signaling can restore deficient pre-
frontal output in a model of chronic pain and improve decision making
processes (Kiritoshi et al., 2013; Kiritoshi et al., 2016). Similarly,
human fMRI work has demonstrated that the CB1R agonist tetrahy-
drocannabinol can increase vmPFC activity during extinction memory
recall (Rabinak et al., 2014). Collectively, these data suggest that eCB
signaling can enhance prefrontal cortical excitability and top down
control over stress responsivity.

Although there are no studies of eCBs in controllable stress, there is
evidence that eCBs may alter PFC-DRN signaling which we have shown
is important for stress coping. For example, systemic administration of a
CB1R agonist increased active coping during a forced swim – an effect
that was prevented by transection of DRN projecting vmPFC fibers
(Bambico et al., 2007). Furthermore, CB1R agonist locally administered
within the vmPFC increased 5-HT single unit firing in the DRN, an
effect that could be blocked by co-administration with CB1R antagonist
or by transection of the vmPFC-DRN connection (Bambico et al., 2007).
As previously mentioned, intra-vmPFC administration of CB1R agonist
increased active coping, but simultaneous administration of a 5HT1A
antagonist, which would increase DRN 5-HT unit activity, blocked this
effect (Sartim et al., 2016). Finally, blocking AEA hydrolysis in the
vmPFC increased firing of 5-HT neurons (McLaughlin et al., 2012). That
CB1R agonist administration or AEA upregulation within the vmPFC
results in excitation of the DRN contradicts the hypothesis that vmPFC
eCBs are important to blunting DRN activity during controllable stress.
Consideration of a few methodological disparities may help reconcile
the view presented here and the results of reviewed above. First, the
experiments with DRN unit recordings after vmPFC eCB manipulations
were conducted in anesthetized rats while the observations of 5-HT
activity in the stressor controllability experiments were made using in
vivo microdialysis in freely behaving rats. It is an empirical question as
to whether the actions of eCB on vmPFC-DRN projection neurons would
be the same in the awake versus anesthetized brain. Second, the
pyramidal neurons projecting from the vmPFC synapse onto both
GABAergic interneurons and 5-HT neurons within the DRN
(Jankowski and Sesack, 2004; Geddes et al., 2016) providing a synaptic
basis for bidirectional modulation of the DRN by the vmPFC. Finally,
prior work with both eCBs and stressor controllability has treated the
vmPFC as a whole rather than isolating manipulations to either the PL
or IL region. This is admittedly difficult with conventional microinjec-
tion approaches, but it is important to note that it is PL-DRN
projections, and not IL-DRN projections, which have been shown to
be selectively activated during controllable stress (Baratta et al., 2009).
Thus, nonselective engagement of vmPFC CB1Rs in an anesthetized rat
may result in a net excitation within the DRN through direct excitation
of vmPFC-DRN projections that synapse onto 5-HT neurons while the
activity-dependent action of eCBs that occurs in a rat experiencing
control over stress may lead to DRN inhibition by selectively activating

the PL neurons that synapse with DRN GABAergic interneurons. In light
of these issues, the role of 2-AG signaling, either alone or in concert
with AEA, may lead to different effects on vmPFC output to the DRN.
Importantly, these disparities and new questions can be tested directly
in future experiments with improved anatomical resolution. In sum,
ample empirical data suggest that eCBs play a role in regulating the
excitability of vmPFC to DRN projection.

4. Endocannabinoids, prefrontal cortex and stressor
controllability

The preceding established that uncontrollable stressful experiences
alter eCB signaling in the vmPFC as evidenced by stressor induced
reductions in AEA and delayed increases in 2-AG. Here we will argue
that the controllability of the stressor will reshape the pattern of eCB
release in the vmPFC; control will prevent of the reduction of and even
elevate AEA and accelerate the increase in 2-AG (Fig. 1). The evidence
that intra-PFC administration of eCBergic compounds can dramatically
alter the expression of stress-related behaviors and even modulate the
vmPFC-DRN tract have much in common with what has been observed
during or as a consequence of controllable stress exposure. Given the
important functions of eCBs in circuit excitability and synaptic plasti-
city, which occur in the vmPFC of rats given control over stress, we
hypothesize that eCBs are critical to the resilience from stress afforded
by controllability because they permit input selection in the action/
outcome system and maintain sustained activation of the vmPFC-DRN
projections throughout ES. (See Fig. 2.)

Consider that while ES and IS “activate” the vmPFC, they do so as a
consequence of differential inputs. Exposure to stressful noxious stimuli
activates numerous brain regions that project to the vmPFC including
the raphe, hypothalamus, amygdala, and hippocampus to name a few.
However, only when control is present, the vmPFC receives input that
encodes the action/outcome contingency between performing the
escape response and the termination of shock. The PL and dorsomedial
striatum are key components of the action/outcome learning circuit
(Balleine and O'Doherty, 2010) and we have demonstrated that
controllable stress induces Fos in both regions to a greater extent than
uncontrollable stress (Baratta et al., 2009; Amat et al., 2014). Prevent-
ing synaptic plasticity in either of these structures eliminates the
protective effects of stressor controllability (Amat et al., 2014;
Christianson et al., 2014). Further evidence that neural activity related
to the action/outcome contingency was reported using optogenetics.
Silencing activity in the vmPFC, specifically during the wheel-turn

Fig. 1. Predicted timecourse of prefrontal endocannabinoid (eCB) level relative to the
beginning of stress. 2-AG (green) rises well after the start of uncontrollable stress while
AEA (blue) gradually decreases as stress continues. Hypothetical values following from
(Hill et al., 2011; McLaughlin et al., 2012). When the stressor is controllable (dashed
lines) 2-AG increases rapidly as a consequence of high frequency firing in the prefrontal
action/outcome system causing sustained depolarization and retrograde release of 2-AG.
Accordingly, sustained neuronal activity would raise AEA levels leading to a gradual
reduction in tonic inhibition in the prefrontal cortex. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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response, was shown to eliminate the long-lasting resilience after
controllable stress; whereas silencing the vmPFC during inter-trial
intervals, that is when the action/outcome circuit is presumed to be
less important, had no effect (Baratta et al., 2015). Although a direct
test is required, we assume that the activity that occurs during
controllable stress in the action/outcome circuit is a critical antecedent
to the activation of PL-DRN neurons that lead to DRN inhibition.

How are the action/outcome inputs to the PL selected for plasticity
during controllable stress while other “non-control” inputs (such as
from amygdala or hypothalamus) are not? We believe the eCB mediated
phenomena of DSE and LTD of excitatory inputs are possible mechan-
isms that could account for this selectivity. At the outset of stress, a PL
output neuron would receive a torrent of dendritic EPSPs from myriad
stress responsive circuits. If the subject has control over stress it will
learn that its actions determine the offset of stress and the thalamo-
cortical action/outcome inputs to the PL neuron would continue to
excite the post synaptic cells projecting to the DMS leading to a)
Hebbian long-term potentiation at only the PL synapses involved in
action/outcome learning b) sustained depolarization leading to in-
creased intracellular calcium and c) the retrograde release of 2-AG. 2-
AG would then suppress the excitatory inputs that are not related to
stressor controllability through heterosynaptic DSE which could even-
tually lead to a relatively permanent suppression of these inputs via
eCB-LTD. Strengthening the action/outcome inputs through LTP while
blunting other inputs would result in a specialized pattern of control-
related information in the PL microcircuit that could maintain coping
behavior during ES.

Importantly, several of the electrophysiological and molecular
antecedents of eCB signaling have been demonstrated within the PL
following an experience with control over stress. Control over stress
alters the intrinsic excitability of PL pyramidal neurons, in part by
increasing voltage gated Ca2+ channel (VGCC) currents underlying the
after depolarization (Varela et al., 2012). Given that many forms of eCB
signaling are Ca2+ dependent, augmenting the conductance of VGCCs
would increase intracellular Ca2+ concentrations within these pyrami-
dal neurons would cause them to be more likely to release eCB which
could in turn promote DSI, DSE, or eCB-LTD locally within the PL.

Second, both eCB-LTD in the cortex (Sjöström et al., 2003) and the
protective effects of controllable stress (Christianson et al., 2014) are
NMDA receptor dependent. Accordingly, both eCB induced plasticity
(Yin et al., 2006; Yuan and Burrell, 2013) and the effects of controllable
stress (Amat et al., 2006) depend on protein synthesis. While it is yet to
be shown that controllable stress results in eCB release and subsequent
eCB-mediated changes in plasticity, the extant data suggest that eCB-
mediated plasticity is likely to occur in the PL during controllable stress.

The weight of evidence from stressor controllability research
indicates that the experience of control over stress results in sustained
activation of PL output neurons which regulate the DRN. This would be
difficult to achieve under low AEA levels that have been reported
during uncontrollable stress. Building on the above hypothesis regard-
ing circuit selection, here we propose that in addition to raising 2-AG
levels, the sustained activity of the PL-DMS action/outcome circuit over
the course of ES would lead to greater AEA in this circuit. The increase
in AEA could augment the tonic level of circuit activity by modulating
presynaptic inhibitory neurons. We expect that an acute effect of this
release is to disinhibit the PL as a consequence of DSI in cholecystokinin
expressing GABAergic interneurons which selectively express CB1R.
Over time, rising levels of AEA will lead to further disinhibition,
possibly through eCB mediated LTD of inhibition (Azad et al., 2004).
This would sensitize PL-DRN output neurons and support a high level of
firing in these cells over the duration of a stress exposure.

To summarize the model, we posit that eCBs play an acute function
in dampening non-control related inputs to the PFC while simulta-
neously elevating the level of circuit output. Continued inputs relating
to action/outcome contingencies will result in sustained drive of a
select population of PL neurons which could play a key role in
maintaining high activity in the stress-suppressing PL-DRN output
neurons. The long-lasting effects of eCBs could be to allow plasticity
or consolidation in the action/outcome circuit leaving the subject
prepared to respond with coping strategies to subsequent stressors.
On the flip side, if the subject does not have control, the high levels of
eCBs will depotentiate many inputs to the PFC and enhance circuit
inhibition, rendering it less excitable and less responsive during
subsequent stressors as suggested previously (McLaughlin et al., 2014).

PL

A B

DRN

CCK

PL

DRN

CCK

2-AG

2-AG
CB1R

CB1R

CB1R

2-AG

2-AG

Stress 

Circuits

Stress 

Circuits

Action/

Outcome

Action/

Outcome

CB1R

Fig. 2. Neural circuits engaged during uncontrollable stress (A) or controllable stress (B) and the hypothetical role of endocannabinoid (eCB) signaling. A. Exposure to traumatic stressors
activates numerous brain systems that enable fight or flight responses. These systems excite both the prelimbic prefrontal cortex (PL) and the serotonergic dorsal raphe nucleus (DRN).
Excitation of the DRN initiates a feed-forward loop which perpetuates the stress response and ultimately renders the DRN sensitized to subsequent stressors which is the critical
mechanism of fear and anxiety behaviors following uncontrollable stress. B. When the traumatic stressor is controllable, an action/outcome learning circuit is engaged in parallel to the
stress response circuits. Thalamocortical inputs to the PL then activate the PL and potentiate its outputs to the dorsomedial striatum which together coordinate coping behaviors. The high
degree of activity within the PL that results from having control causes the release of 2-arachidonylglycerol (2-AG) which serve to shunt inputs from the stress circuits through retrograde
inhibition of excitatory synapses while increasing output of the PL more generally through disinhibition of presynaptic cholecystokinin (CCK) GABAergic neurons. One consequence of
this disinhibition activation is sustained activity in PL neurons that silences 5-HT activity via direct projections to inhibitory interneurons within the DRN. Thus, when control is present
the action/outcome and top-down inhibitory systems of the PL gain priority over stress responsive systems and eCBs are positioned to be critical to this circuit selection and stress
resilience.
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5. Conclusion

It is clear that behavioral control over stress is a key factor in
determining the consequences of a traumatic experience but at this
point in time, there are many open questions pertaining to the specific
neural mechanisms that provide for resilience in subjects that can
control the stressor. We reviewed the compelling evidence that activity
and plasticity within the PL leads to learning an action/outcome
contingency and top-down inhibition of stress responsive brain regions
like the DRN. We hypothesized that the eCB system could be a key
contributor to shaping the PL circuits during stress and suggested a
model to guide future research. With regard to eCBs, our model makes
several predictions. First, it predicts that the pattern and timecourse of
eCB release in the vmPFC will be influenced by the controllability of
stress, with controllable stressors leading to more rapid and greater
concentrations of both 2-AG and AEA than uncontrollable stress.
Second, perturbations of the eCB system, such as a CB1R blockade,
will prevent resilience in rats that have control over stress. Third,
neuronal activity observed in PL-DRN neurons depends upon eCB
mediated potentiation of specific excitatory inputs to these PL neurons
and disinhibition of presynaptic GABAergic cell populations. While this
framework does not address how the action/outcome circuit is linked to
the PL-DRN inhibitory circuit, clearly, the link is in the PL. A
translational extension of this work, which echoes the suggestions of
numerous others (Hill and Gorzalka, 2009; Korem et al., 2015; Papini
et al., 2015; Wyrofsky et al., 2015), is that pharmacological interven-
tions that augment either AEA or 2-AG activity within the PL could be
potent pharmacotherapies for stress-related psychopathologies.
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